Electromagnetic Field Theory

Code	Credit Hours
EE 241	3-0

Course Description

The successful completion of the course should lay down the required foundation for all subsequent courses in Telecommunication, especially in RF & Microwave engineering domain. It will also prepare students to understand the fundamental principles and laws of electromagnetism and the phenomenon of Wave propagation.

Text Book:

1. Elements of Electromagnetics by Matthew N.O.Sadiku, 7th Edition

Reference Book:

- 1. Engineering Electromagnetics by William H. Hayt, JR and John A. Buck, 7th Edition
- 2. Introduction to Electrodynamics by Griffiths
- 3. Engineering Electromagnetics by Nathan Ida,2nd Edition
- 4. Engineering Electromagnetics by Kenneth and Demarest

Prerequisites

ASSESSMENT SYSTEM FOR THEORY

Quizzes	15%
Assignments	5%
Mid Terms	30%
ESE	50%

ASSESSMENT SYSTEM FOR LAB

Assignments	n/a
Lab Work and Report	n/a
Lab ESE/Viva	n/a

Teaching Plan

Week No	Topics	Learning Outcomes
1-2	Review of Vectors and Coordinate Systems	 Course Introduction, Vector Algebra Coordinate Systems and Transformations: Cartesian and Cylindrical Coordinates, Spherical Coordinates, Vector Calculus - Integral of a Vector, Del, Gradient Vector Calculus – Divergence, Curl, Stokes' Theorem, Laplacian
3-8	Static Electric Field	 Coulomb's Law and Electric Field Gauss's Law and Divergence of Electric Flux Density Work, Potential, Potential Gradient and Energy in Electrostatic Field Current and Current Density, Conductor, Dielectrics, Boundary Conditions, Capacitance Laplace's and Poisson's Equation
9	MID Term Exam	
10-13	Steady-State Magnetic Field	 Steady Magnetic Field Biot-Savart's Law Ampere's Law Curl of H, Stoke's Theorem Magnetic Material and Boundary Conditions Magnetic Flux Density Vector Magnetic Potential Inductance
14-15	Time Varying Fields	 Faraday's Law Displacement Current Density Maxwell's Equations in Differential and Integral Form Retarded Potential
16-17	Reflection	 Reflection from perfect Conductors Reflection from perfect dielectrics
18		End Semester Exam

Practical:

Experiment	
No	Description
1	n/a
2	n/a
3	n/a
4	n/a
5	n/a
6	n/a
	n/a
7	
8	n/a
9	n/a
10	n/a
11	n/a
12	n/a
13	n/a
14	n/a
15	n/a
16	n/a